	Α	В	С	D	E	F	G	Н	I	J	K	L	l M	N	0	Р
1						CALCULATI	ONS OF ARKAN	SAS WATE	R QUALITY	-BASED EF	FLUENT LIMIT	ATIONS				
2	The spreadshee	t logic will f	unction corre	ctly when AL	L yellow cell	s with "?" have	e data entered.	For an Arka	nsas Rive	r/Stream						
3	Do not enter dat	a in yellow	cells marked	"Reserved".	White cells	marked "Rese	rved" have comp	(Reserved)								
						(Use Code at		GC								
5																
6																
7	FACILITY										Codes & TSS	for Ecoregi	ions and Larg	e Rivers		
8										Ouachita Mt	s. Eco (OM) =	2.0 mg/l	Arkansas (Ft.	Smith to Dar	danelle Dam	12.0 mg/l
9	Permittee							EDCC		Ozark Highla	ands Eco (OH) =	2.5 mg/l	Arkansas (Da	rdanelle Dam	to Terry L&I	10.5 mg/l
10	NPDES Permit I	No.						AR0000752		Boston Mts.	Eco (BM) =	1.3 mg/l	Arkansas (Te	rry L&D to L&	D No. 5)	8.3 mg/l
	Outfall No.(s)							103ST		Ark River Va	alley Eco (AV) =	3.0 mg/l	Arkansas (L&	D No. 5 to Mo	outh)	9.0 mg/l
12	Plant Effluent Fl	ow (MGD)						0.65				5.5 mg/l	White (Above			2.5 mg/l
	Plant Effluent Fl	ow (cfs)						1.00		Delta Ecoreg	gion (DL) =	8.0 mg/l	White (Below	Bull Shoals to	o Black Riv)	3.3 mg/l
14													White (From	Black River to	Mouth)	18.5 mg/l
	RECEIVING ST	REAM											St. Francis R			18.0 mg/l
16													Ouachita (Ab		,	2.0 mg/l
		this a Large River from the list at right? (enter "1" if yes, "0" if no; make entry as a number				try as a number)						Ouachita (Below Caddo River)			5.5 mg/l	
	Name of Receiv	ing Stream	:					unnamed tri	butary				Red River			33.0 mg/l
19																
	Is this a lake or	reservoir? (enter '1' if yes	s, '0' = no;	make entry	as a number)		0			Total Hardnes					
	(Reserved)							0			Arkansas Rive		1	Red River = 211 mg/l		
	(Reserved)	DO	NOT INPUT	DATA INTO	CELL H22,	H23 & H24	LEAVE BLANK-	• <mark>?</mark>			Ouachita River		St. Francis River = 103 m			ig/l
23	(Reserved)							, <u> </u>			White River =	116 mg/l				
24 25		(Reserved))	(Reserved)				(Reserved)								
25				(Reserved)				(Reserved)			Gulf Coastal =				ount = 31 mg/	
26 27				(Reserved)				(Reserved)			Ozark Highland		g/I		illey = 25 mg	;/I
20				(Reserved)				(Reserved)			Boston Mount	= 25 mg/I		Delta = 81 m	ng/I	
	Ecoregion TSS	(ma/l) (For	Large River. S	See List to R	iaht)			5.50			Large Rivers					
	Ecoregion Hard				<u> </u>			31.00			Mississippi Riv	er, Arkans	as River, Red	River		
	Enter 7Q10 (cfs			(Reserved)				11.56	(Reserved		White (Below o					
	Long Term Ave			cfs)				1.00	(Reserved	(Reserved)	Ouachita (Belo	w confluence	ce with Little Mi	iss. River)		
33	Using Diffusers	(Yes/No)		,				no	•	,	,			,		
34	pH (Avg)	`						7.00			For industrial	and federal	facility, use the	highest mon	thly average	flow
	Percent (%) of 0	Critical Flow	for Chronic C	Criteria				0.67			for the past 24					
	Percent (%) of C		for Acute Cri	teria				0.33								
	Water Effect Ra							1.00	These cells		#VALUE! =>					
	Ave Monthly Lin			age 103 TSD	for WQ-Bas	ed Toxics Co	ntrol)	1.55	must be		9999999.00 =>	No EPA/A	DEQ Guideline			
39	Max Daily Limit	LTA Multipl	ier (Ref: "	"	"	")	3.11	unlocked							
40	Max Daily Limit	LTA Multipl	ier for Human	n Health (Ref	: 2009 CPP;	Section 5.27.	2)	1.64	to change.							

	Α	В	С	D	E	l F	G	Н	1 1	1	K	ı	М	l N	0	P
41	STEP 2:		-			'		11	ı	3	IX		IVI	I IN		<u>'</u>
42	SIEF Z.	STEP 2: INPUT AMBIENT AND EFFLUENT DATA CALCULATE IN-STREAM WASTE CONCENTRATIONS														
43		CALCULATE	IN-STREAT	W WASTE C	ONCENTRA	ATIONS										
44	DATA INPUT				00 -1-4					!!+ //						
44	DATA INPUT				for less than 20 data points enter geometric mean concentration as micro-gram per liter (ug/l or ppb).											
45 46				For 20 or mo	or 20 or more data points in set enter highest concentration as micro-gram per liter (ug/l or ppb).											
46																
47					fluent value reported as "< detection level" (DL) but the DL is greater than MQL, the 1/2 DL is used. fluent value reported as "< detection level" (DL) and the DL is smaller than MQL, "0" is used.											
48										IQL, "0" is use	d.					
49				If a firm valu	a firm value is reported, even less than MQL, the reported value is used.											
50																
51					e following formulae is used to calculate the Instream Waste Concentration (IWC)											
52				(Please refe												
53					(Qe	e*2.13*Ce)] / (F*Qa + Qe)									
54 55				Where:												
55						Concentration										
56						allowed for m										
57					e = Reported concentration in effluent											
58					Cb = Ambient stream concentration upstream of discharge											
59					te = Plant effluent flow											
60				Qb = Critica	Qb = Critical low flow of stream at discharge point expressed as the 7Q10 or harmonic mean flow for human health criteria											
61				Upstream Fl	Upstream Flow (Qb)= (% of 7Q10) X 7Q10 for Chronic and Acute											
62																
	The following fo	rmulae conve	ert metals re	ported in tota	al form to dis	ssolved form if	criteria are in di	ssolved form								
64																
	Kp = Kpo * (TS					Kp = Linear p	artition coefficie	nt; Kpo and a	a can be fou	ınd in table bel	ow					
	C/Ct = 1/(1 + K)			TSS = Total suspended solids concentration found in receiving stream (or in effluent for intermittent stream)												
67	Total Metal Crit	eria (Ct) = Cr	/ (C/Ct)	C/Ct = Fraction of metal dissolved; and Cr = Dissolved criteria value												
68																
69		*Stream Lin	ear Partitio	n Coefficien	it (Insert "D	issolved" Co	nc in Column B	to convert t	o "Total")	L	ake Linear Pa	artition Coe	fficient			
		Dissolved														
		Value in														
70	Total Metals	Stream		Kpo	alpha (a)	Kp	C/Ct	Total Value			Kpo	alpha (a)	Kp	C/Ct	Total Value	
71																
	Cadmium			4000000	-1.13	582706.889		0.00			3520000.00	-0.92	733514.98	0.1986361	0	
	Chromium(3)			3360000	-0.93		0.208948818	0.00			2170000.00	-0.27	1369499.28		0	
	Copper			1040000	-0.74		0.381672529	0.00			2850000.00	-0.9		0.2283249	0	
76	Lead			2800000	-0.8	715925.58	0.202527926	0.00			2040000.00	-0.53	826490.64	0.1803199	0	
	Mercury			2900000	-1.14	415321.613		0.00			1970000.00	-1.17	268066.09	0.4041443	0	
	Nickel			490000	-0.57		0.495077211	0.00			2210000.00	-0.76	604946.03	0.2310962	0	
	Zinc			1250000	-0.7	379014.766		0.00			3340000.00	-0.68	1047851.74	0.1478593	0	
	Silver			2400000	-1.03	414607.994	0.30484608	0.00			2400000.00	-1.03	414607.99	0.3048461	0	
81		*Note: Use this	section to conve	ert lab concentra	ations shown a	s "dissolved" to "to	otal"									
82											Dissolved	Total				

	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р		
	The following f	ormulas ar	e used to ca	alculate wate	r quality cr	iteria based o					WQC (ug/l)	WQC(ug/l))					
	Cadmium			Acute			WER X CF1 X				1.04		CF1 = 1.136672 - [0.041838*ln(hardness)]					
85				Chronic			WER X CF2 X e(0.7852[ln(hardness)]-3.490)				0.43	0.43		CF2 = 1.101672 - [0.041838*ln(hardness)]				
86																		
	Chromium Tri			Acute			WER X 0.316 X e(0.819[In(hardness)]+3.688				210.28							
88				Chronic			WER X 0.86 X	e(0.819[ln(l	hardness)]+1.561	68.21							
89																		
	Chromium Hex			Acute			WER X 0.982				15.71							
91				Chronic			WER X 11 X 0	962			10.58							
92																		
93	Copper			Acute			WER X 0.96 X				5.64							
94				Chronic			WER X 0.96 X	e(0.8545[In	(hardness	s)]-1.465)	4.17							
95																		
	Lead			Acute			WER X e(1.27)				17.68		CF3 = 1.462	03 - [0.145712	2*In(hardness	3)]		
97				Chronic			WER X e(1.27)	3[In(hardnes	ss)]-4.705)*CF3	0.69							
98																		
99	Mercury			Acute			WER X 0.85 X	2.4			2.04							
100				Chronic			WER X 0.012				0.01							
101																		
	Nickel			Acute			WER X 0.998			,. ,	525.50							
103				Chronic			WER X 0.997	K e(0.8460[I	n(hardne	ss)]+1.1645)	58.36							
104																		
105				Acute			WER X 0.978				42.43							
106				Chronic			WER X 0.986	K e(0.8473[I	n(hardne	ss)]+0.7614)	38.74							
107																		
108	Silver			Acute			WER X 0.85 X	e(1.72[ln(h	ardness)]	6.52)	0.46							
109											_							
110	Cyanide			Acute			WER X 22.36				22.36							
111				Chronic			WER X 5.2				5.20							
118																		
	Selenium			Acute			WER X 20				20.00							
120				Chronic			WER X 5				5.00							
121																		
122	The following fo	rmulas are																
123			$DF = ((2.8)^{\circ})$	D * 3.1416^			% of effluent at											
124 125											eria 200 feet for mix	ing zone.						
125			DF =	#VALUE!	Acute	#VALUE!	Chronic	#VALUE	! Bioacc	-								
126	İ																	

	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р
	The following for	mulas are ı	used to calcula	ate the inst	ream waste c	oncentration (IWC) for each p	ollutant:								
128	-															
129			IWC = [(Fra	c X Critical	Flow X Cb) +	(2.13 X Ce X	Qd)] / [Frac X C	ritical Flow +	Qd] wher	e the critical	flow is the 7Q1	0 except for l	akes with the	Jet Stream M	odel.	
130																
131		IWC = (DF X Ce) + Cb for lakes with Jet Stream Model.														
			Number of		EPA	Background	Effluent	Domestic	Acute	Chronic			Arkansas Acute	Arkansas Chronic	Arkansas	EPA
132	POLLUTANTS		Data points	MQL	Statistical	Conc.	Conc.	Supply	Aquatic	Aquatic	Bioacc.	[Reserved]	Aquatic	Aquatic	Bioacc.	Bioacc.
133				ug/l	Factor	Cb ug/l	Ce ug/l	IWC ug/l	IWC ug/l	IWC ug/l	IWC ug/l		ug/l	ug/l	ug/l	ug/l
137	METALS AND C	CYANIDE														
138	8. Copper Total		18	0.5	2.13	0	8.25	1.40	3.64	2.01	8.78	9999999	14.79	10.93	9999999	13,000
	9. Lead Total		53	0.5	1	0	9.9	0.79	2.05	1.13	4.95	9999999	87.29	3.40	9999999	50
	16. Zinc Total		18	20	2.13	0	101.29	17.15	44.74	24.63	107.77	9999999	130.87	119.50	9999999	260,000
141														*Primary D	rinking Wat	er MCI

	A	В	С	D	Е	F	G	Н		J	К	L	М	N	0	Р
	STEP 3:	APPLICABL	E WATER C	UALITY-BA	SED LIMITS									· · · · · · · · · · · · · · · · · · ·		
143																
144																
145								ADEQ H	UMAN	HEALTH	CRITERIA					
			Permit	Permit	Permit	Permit		Permit	Permit	Permit	Permit					
			Daily	Monthly	Daily	Monthly		Daily	Monthly	Daily	Monthly					
	POLLUTANTS		Maximum	Average	Maximum	Average		Maximum	Average	Maximum	Average					
147			ug/l	ug/l	lb/day	lb/day		ug/l	ug/l	lb/day	lb/day					
148	Copper Total		NO	NO	NO	NO										
	Lead Total		NO	NO	NO	NO										
150	Zinc Total		NO	NO	NO	NO										